lenskit.sklearn.svd#
Singular value decomposition for explicit feedback.
This module contains a truncated SVD explicit-feedback scorer built on
sklearn.decomposition.TruncatedSVD
.
Classes
|
|
|
Biased matrix factorization for explicit feedback using SciKit-Learn's |
- class lenskit.sklearn.svd.BiasedSVDConfig(embedding_size: 'int' = FieldInfo(annotation=NoneType, required=False, default=50, alias_priority=2, validation_alias=AliasChoices(choices=['embedding_size', 'features'])), damping: 'Damping' = 5, algorithm: "Literal['arpack', 'randomized']" = 'randomized', n_iter: 'int' = 5)#
Bases:
object
- Parameters:
- class lenskit.sklearn.svd.BiasedSVDScorer(config=None, **kwargs)#
Bases:
Component
[ItemList
, …],Trainable
Biased matrix factorization for explicit feedback using SciKit-Learn’s
TruncatedSVD
. It operates by first computing the bias, then computing the SVD of the bias residuals.You’ll generally want one of the iterative SVD implementations such as
lennskit.als.BiasedMFScorer
; this is here primarily as an example and for cases where you want to evaluate a pure SVD implementation.- Stability:
- Caller (see Stability Levels).
- Parameters:
config (BiasedSVDConfig)
kwargs (Any)
- train(data, options=TrainingOptions(retrain=True, device=None, rng=None))#
Train the model to learn its parameters from a training dataset.
- Parameters:
data (Dataset) – The training dataset.
options (TrainingOptions) – The training options.