lenskit.metrics.RecipRank#
- class lenskit.metrics.RecipRank(k=None)#
Bases:
ListMetric
,RankingMetricBase
Compute the reciprocal rank [KV97] of the first relevant item in a list of recommendations. Taking the mean of this metric over the recommendation lists in a run yields the MRR (mean reciprocal rank).
Let \(\kappa\) denote the 1-based rank of the first relevant item in \(L\), with \(\kappa=\infty\) if none of the first \(k\) items in \(L\) are relevant; then the reciprocal rank is \(1 / \kappa\). If no elements are relevant, the reciprocal rank is therefore 0. Deshpande and Karypis [DK04] call this the “reciprocal hit rate”.
- Parameters:
k (int | None)
Methods
__init__
([k])measure_list
(recs, test)Compute the metric value for a single result list.
truncate
(items)Truncate an item list if it is longer than
k
.Attributes
default
The default value to infer when computing statistics over missing values.
k
The maximum length of rankings to consider.
The metric's default label in output.
- property label#
The metric’s default label in output.
The base implementation returns the class name by default.