lenskit.sklearn.nmf#
Nonnegative matrix factorization for implicit feedback.
This module contains a non-negative factorization implicit-feedback scorer built on
sklearn.decomposition.non_negative_factorization()
.
Classes
|
Configuration for |
|
Non-negative matrix factorization for implicit feedback using SciKit-Learn's |
- class lenskit.sklearn.nmf.NMFConfig(*, beta_loss='frobenius', max_iter=200, n_components=None, alpha_W=0.0, alpha_H='same', l1_ratio=0.0)#
Bases:
BaseModel
Configuration for
NMFScorer
. See the documentation forsklearn.decomposition.non_negative_factorization()
for the configuration options.- Parameters:
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class lenskit.sklearn.nmf.NMFScorer(config=None, **kwargs)#
Bases:
Component
[ItemList
, …],Trainable
Non-negative matrix factorization for implicit feedback using SciKit-Learn’s
sklearn.decomposition.non_negative_factorization()
. It computes the user and item embedding matrices using an indicator matrix as the input.- Stability:
- Caller (see Stability Levels).
- Parameters:
config (NMFConfig)
kwargs (Any)
- train(data, options=TrainingOptions(retrain=True, device=None, rng=None))#
Train the model to learn its parameters from a training dataset.
- Parameters:
data (Dataset) – The training dataset.
options (TrainingOptions) – The training options.