lenskit.knn.item#
Item-based k-NN collaborative filtering.
Classes
|
Configuration for |
|
Item-item nearest-neighbor collaborative filtering feedback. |
- class lenskit.knn.item.ItemKNNConfig(*, max_nbrs=20, min_nbrs=1, min_sim=1e-06, save_nbrs=None, feedback='explicit', block_size=250)#
Bases:
BaseModel
Configuration for
ItemKNNScorer
.- Parameters:
- max_nbrs: PositiveInt#
The maximum number of neighbors for scoring each item.
- min_nbrs: PositiveInt#
The minimum number of neighbors for scoring each item.
- min_sim: PositiveFloat#
Minimum similarity threshold for considering a neighbor. Must be positive; if less than the smallest 32-bit normal (\(1.175 \times 10^{-38}\)), is clamped to that value.
- save_nbrs: PositiveInt | None#
The number of neighbors to save per item in the trained model (
None
for unlimited).
- feedback: FeedbackType#
The type of input data to use (explicit or implicit). This affects data pre-processing and aggregation.
- block_size: int#
The block size for computing item similarity blocks in parallel. Only affects performance, not behavior.
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class lenskit.knn.item.ItemKNNScorer(config=None, **kwargs)#
Bases:
Component
[ItemList
, …],Trainable
Item-item nearest-neighbor collaborative filtering feedback. This item-item implementation is based on the description of item-based CF by Deshpande and Karypis [DK04] and hard-codes several design decisions found to work well in the previous Java-based LensKit code [ELKR11]. In explicit-feedback mode, its output is equivalent to that of the Java version.
Note
This component must be used with queries containing the user’s history, either directly in the input or by wiring its query input to the output of a user history component (e.g.,
UserTrainingHistoryLookup
).- Stability:
- Caller (see Stability Levels).
- Parameters:
config (ItemKNNConfig)
kwargs (Any)
- items_: Vocabulary#
Vocabulary of item IDs.
- users_: Vocabulary#
Vocabulary of user IDs.
- train(data, options=TrainingOptions(retrain=True, device=None, rng=None))#
Train a model.
The model-training process depends on
save_nbrs
andmin_sim
, but not on other algorithm parameters.- Parameters:
ratings – (user,item,rating) data for computing item similarities.
data (Dataset)
options (TrainingOptions)