lenskit.splitting.sample_users#
- lenskit.splitting.sample_users(data: Dataset, size: int, method: HoldoutMethod, *, repeats: int, disjoint: bool = True, test_only: bool = False, rng: RNGInput = None) Iterator[TTSplit] #
- lenskit.splitting.sample_users(data: Dataset, size: int, method: HoldoutMethod, *, disjoint: bool = True, rng: RNGInput = None, test_only: bool = False, repeats: None = None) TTSplit
Create train-test splits by sampling users. When
repeats
is None, returns a single train-test split; otherwise, it returns an iterator over multiple splits. Ifrepeats=1
, this function returns an iterator that yields a single train-test pair.- Parameters:
data – Data frame containing ratings or other data you wish to partition.
size – The sample size.
method – The method for obtaining user test ratings.
repeats – The number of samples to produce.
test_only – If
True
, returns splits with empty training sets (useful when you just want to save the test data).rng – The random number generator or seed (see Random Seeds).
- Returns:
The train-test pair(s).