lenskit.metrics.NDCG#
- class lenskit.metrics.NDCG(k=None, *, discount=<ufunc 'log2'>, gain=None)#
Bases:
ListMetric
,RankingMetricBase
Compute the normalized discounted cumulative gain [JarvelinKekalainen02].
Discounted cumultative gain is computed as:
\[\begin{align*} \mathrm{DCG}(L,u) & = \sum_{i=1}^{|L|} \frac{r_{ui}}{d(i)} \end{align*}\]Unrated items are assumed to have a utility of 0; if no rating values are provided in the truth frame, item ratings are assumed to be 1.
This is then normalized as follows:
\[\begin{align*} \mathrm{nDCG}(L, u) & = \frac{\mathrm{DCG}(L,u)}{\mathrm{DCG}(L_{\mathrm{ideal}}, u)} \end{align*}\]- Parameters:
k (int | None) – The maximum recommendation list length to consider (longer lists are truncated).
discount (Callable[[ndarray[Any, dtype[number]]], ndarray[Any, dtype[float64]]]) – The discount function to use. The default, base-2 logarithm, is the original function used by Järvelin and Kekäläinen [JarvelinKekalainen02].
gain (str | None) – The field on the test data to use for gain values. If
None
(the default), all items present in the test data have a gain of 1. If set to a string, it is the name of a field (e.g.'rating'
). In all cases, items not present in the truth data have a gain of 0.
- __init__(k=None, *, discount=<ufunc 'log2'>, gain=None)#
Methods
__init__
([k, discount, gain])measure_list
(recs, test)Compute the metric value for a single result list.
truncate
(items)Truncate an item list if it is longer than
k
.Attributes
default
The default value to infer when computing statistics over missing values.
k
The maximum length of rankings to consider.
The metric's default label in output.
discount
gain
- property label#
The metric’s default label in output.
The base implementation returns the class name by default.