lenskit.sklearn.svd#
Singular value decomposition for explicit feedback.
This module contains a truncated SVD explicit-feedback scorer built on
sklearn.decomposition.TruncatedSVD
.
Classes
|
|
|
Biased matrix factorization for explicit feedback using SciKit-Learn's |
- class lenskit.sklearn.svd.BiasedSVDConfig(*, embedding_size=50, damping=5, algorithm='randomized', n_iter=5)#
Bases:
EmbeddingSizeMixin
,BaseModel
- Parameters:
- embedding_size: int#
The dimension of user and item embeddings (number of latent features to learn).
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class lenskit.sklearn.svd.BiasedSVDScorer(config=None, **kwargs)#
Bases:
Component
[ItemList
, …],Trainable
Biased matrix factorization for explicit feedback using SciKit-Learn’s
TruncatedSVD
. It operates by first computing the bias, then computing the SVD of the bias residuals.You’ll generally want one of the iterative SVD implementations such as
lenskit.als.BiasedMFScorer
; this is here primarily as an example and for cases where you want to evaluate a pure SVD implementation.- Stability:
- Caller (see Stability Levels).
- Parameters:
config (BiasedSVDConfig)
kwargs (Any)
- train(data, options=TrainingOptions(retrain=True, device=None, rng=None))#
Train the model to learn its parameters from a training dataset.
- Parameters:
data (Dataset) – The training dataset.
options (TrainingOptions) – The training options.