lenskit.pipeline.PipelineConfig#

class lenskit.pipeline.PipelineConfig(*, meta, inputs=<factory>, components=<factory>, aliases=<factory>, default=None, literals=<factory>)#

Bases: BaseModel

Root type for serialized pipeline configuration. A pipeline config contains the full configuration, components, and wiring for the pipeline, but does not contain the learned parameters.

Stability:
Full (see Stability Levels).
Parameters:
__init__(**data)#

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:

data (Any)

Return type:

None

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

from_orm(obj)

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(_BaseModel__context)

Override this method to perform additional initialization after __init__ and model_construct.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

model_validate_strings(obj, *[, strict, context])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

Attributes

model_computed_fields

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

meta

Pipeline metadata.

inputs

Pipeline inputs.

components

Pipeline components, with their configurations and wiring.

aliases

Pipeline node aliases.

default

The default node for running this pipeline.

literals

Literals

meta: PipelineMeta#

Pipeline metadata.

inputs: list[PipelineInput]#

Pipeline inputs.

components: OrderedDict[str, PipelineComponent]#

Pipeline components, with their configurations and wiring.

aliases: dict[str, str]#

Pipeline node aliases.

default: str | None#

The default node for running this pipeline.

literals: dict[str, PipelineLiteral]#

Literals

model_config: ClassVar[ConfigDict] = {}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].