lenskit.metrics.ExposureGini#
- class lenskit.metrics.ExposureGini(*, items, k=None, weight=<lenskit.metrics.ranking._weighting.GeometricRankWeight object>)#
Bases:
GiniBase
Measure exposure distribution of recommendations with the Gini coefficient.
This uses a weighting model to compute the exposure of each item in each list, and computes the Gini coefficient of the total exposure.
- Parameters:
k (int | None) – The maximum recommendation list length.
items (int | pd.Series | pd.DataFrame | Dataset) – The total number of items, a data frame or series of item data, or a dataset. If a frame or series is provided, its length will be used as the number of items. If a dataset is provided, its item count will be used.
weight (RankWeight) – The rank weighting model to use. Defaults to
GeometricRankWeight
with the specified patience parameter.
- Stability:
- Caller (see Stability Levels).
- __init__(*, items, k=None, weight=<lenskit.metrics.ranking._weighting.GeometricRankWeight object>)#
Methods
__init__
(*, items[, k, weight])compute_list_data
(output, test)Compute measurements for a single list.
extract_list_metric
(metric, /)Extract a single-list metric from the per-list measurement result (if applicable).
global_aggregate
(values)Aggregate list metrics to compute a global value.
truncate
(items)Truncate an item list if it is longer than
k
.Attributes
k
The maximum length of rankings to consider.
label
Default name — class name, optionally @K.
weight
item_count
- compute_list_data(output, test)#
Compute measurements for a single list.
- Parameters:
output (ItemList)
- global_aggregate(values)#
Aggregate list metrics to compute a global value.
- Parameters:
values (list[tuple[Array, FloatArray]])