lenskit.hpf#
Hierarchical Poisson factorization from hpfrec
.
Classes
|
Configuration class for |
|
Hierarchical Poisson factorization, provided by hpfrec |
- class lenskit.hpf.HPFConfig(*, count_attribute='count', embedding_size=50, **extra_data)#
Bases:
BaseModel
Configuration class for
HPFScorer
.Only a couple of configuration options are directly defined here. Other options are taken from the
hpfrec.HPF
constructor’s keyword arguments.- count_attribute: str | None#
The attribute from which to get user-item interaction counts. If
None
, uses indicator variables as a count of 1.
- embedding_size: int#
The dimension of user and item embeddings (number of latent features to learn).
- model_config: ClassVar[ConfigDict] = {'extra': 'allow'}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class lenskit.hpf.HPFScorer(config=None, **kwargs)#
Bases:
Component
[ItemList
, …],Trainable
Hierarchical Poisson factorization, provided by hpfrec
Todo
Right now, this uses the ‘rating’ as a count. Actually use counts (🐞 656).
- Stability:
Experimental
- Parameters:
features – the number of features
kwargs (Any) – additional arguments to pass to
hpfrec.HPF
.config (HPFConfig)
- train(data, options=TrainingOptions(retrain=True, device=None, rng=None))#
Train the model to learn its parameters from a training dataset.
- Parameters:
data (Dataset) – The training dataset.
options (TrainingOptions) – The training options.