References#

[DK04]

Mukund Deshpande and George Karypis. Item-based top-N Recommendation Algorithms. ACM Trans. Inf. Syst., 22(1):143–177, January 2004. doi:10.1145/963770.963776.

[ELKR11]

Michael Ekstrand, Michael Ludwig, Joseph A. Konstan, and John Riedl. Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit. In Proceedings of the 5th ACM Conference on Recommender Systems, 133–140. ACM, 2011. doi:10.1145/2043932.2043958.

[Eks20]

Michael D Ekstrand. LensKit for Python: next-generation software for recommender system experiments. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management. 2020. doi:10.1145/3340531.3412778.

[EM17]

Michael D Ekstrand and Vaibhav Mahant. Sturgeon and the Cool Kids: Problems with Top-N Recommender Evaluation. In Proceedings of the 30th Florida Artificial Intelligence Research Society Conference. AAAI Press, May 2017. URL: https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/viewPaper/15534.

[HDW+20]

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 639–648. Virtual Event China, July 2020. ACM. doi:10.1145/3397271.3401063.

[HKV08]

Y Hu, Y Koren, and C Volinsky. Collaborative Filtering for Implicit Feedback Datasets. In 2008 Eighth IEEE International Conference on Data Mining, 263–272. ieeexplore.ieee.org, December 2008. doi:10.1109/ICDM.2008.22.

[Joh14]

Christopher C Johnson. Logistic matrix factorization for implicit feedback data. Adv. Neural Inf. Process. Syst., 2014. URL: http://web.stanford.edu/~rezab/nips2014workshop/submits/logmat.pdf.

[JarvelinKekalainen02]

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems, 20(4):422–446, October 2002. doi:10.1145/582415.582418.

[KV97]

Paul B Kantor and Ellen Voorhees. Report on the TREC-5 Confusion Track. In The Fifth Text REtrieval Conference (TREC-5). October 1997. URL: http://trec.nist.gov/pubs/trec5/t5_proceedings.html.

[MZ08]

Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of retrieval effectiveness. Transactions on Information Systems, 27(1):2:1–27, December 2008. doi:10.1145/1416950.1416952.

[RFGSchmidtThieme09]

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. In UAI '09, 452–461. Arlington, Virginia, United States, 2009. AUAI Press. URL: http://dl.acm.org/citation.cfm?id=1795114.1795167 (visited on 2015-10-16).

[TDV21]

Yan-Martin Tamm, Rinchin Damdinov, and Alexey Vasilev. Quality Metrics in Recommender Systems: Do We Calculate Metrics Consistently? In RecSys '21, 708–713. New York, NY, USA, September 2021. Association for Computing Machinery. doi:10.1145/3460231.3478848.

[VC11]

Saúl Vargas and Pablo Castells. Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems. In RecSys '11, 109–116. New York, NY, USA, 2011. ACM. doi:10.1145/2043932.2043955.

[VSR12]

Jesse Vig, Shilad Sen, and John Riedl. The Tag Genome: Encoding Community Knowledge to Support Novel Interaction. ACM Trans. Interact. Intell. Syst., 2(3):13:1–13:44, September 2012. doi:10.1145/2362394.2362395.

[WBU11]

Jason Weston, Samy Bengio, and Nicolas Usunier. WSABIE: scaling up to large vocabulary image annotation. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. July 2011. URL: https://www.ijcai.org/Proceedings/11/Papers/460.pdf (visited on 2021-02-25).

[WYW13]

Jason Weston, Hector Yee, and Ron J Weiss. Learning to rank recommendations with the k-order statistic loss. In RecSys '13, 245–248. New York, NY, USA, October 2013. Association for Computing Machinery. doi:10.1145/2507157.2507210.

[ZWSP08]

Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-Scale Parallel Collaborative Filtering for the Netflix Prize. In Algorithmic Aspects in Information and Management, 337–348. Springer Berlin Heidelberg, 2008. doi:10.1007/978-3-540-68880-8_32.