Algorithms¶
LKPY provides general algorithmic concepts, along with implementations of several algorithms. These algorithm interfaces are based on the SciKit design patterns [SKAPI], adapted for Pandas-based data structures.
Basic Algorithms¶
|
A user-item bias rating prediction algorithm. |
|
Recommend the most popular items. |
|
Basic recommender that implements top-N recommendation using a predictor. |
|
The Fallback algorithm predicts with its first component, uses the second to fill in missing values, and so forth. |
|
|
|
The memorized algorithm memorizes socres provided at construction time. |
k-NN Algorithms¶
|
User-user nearest-neighbor collaborative filtering with ratings. |
|
Item-item nearest-neighbor collaborative filtering with ratings. |
Matrix Factorization¶
|
Biased matrix factorization trained with alternating least squares [ZWSP2008]. |
|
Implicit matrix factorization trained with alternating least squares [HKV2008]. |
|
Algorithm class implementing FunkSVD matrix factorization. |
External Library Wrappers
|
LensKit interface to |
|
LensKit interface to |
|
Hierarchical Poisson factorization, provided by hpfrec_. |
References¶
- SKAPI
Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Vanderplas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. 2013. API design for machine learning software: experiences from the scikit-learn project. arXiv:1309.0238 [cs.LG].